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Abstract

Hoops are defined as geometric circles of radius = 1 in 3-dimensional Euclidean space/l 3. It

is shown that it is possible to continuously fill an open set of R a with disjoint hoops. It is also

shown that in any such open set, every pair of hoops must link each other, and consequently
there is an upper bound to the volume that such an open set may have.
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Hoops are defined as geometric
unit circles in R 3. It is shown there exists

a nonempty connected open set U in R 3

that is foliated by leaves all of which are
hoops, and that for any such foliation,
every pair of leaves must be linked with
each other. As a result there is an upper
bound for the volume of such an open set
U.

]_lllitdtfl_ A hoop is any subset of R 3
that is congruent (by a rigid motion) to the
unit circle in the xy-plane {(x,y,0) I x 2 +
y2= 1}. A hoop is determined uniquely by
a choice of center, and a choice of normal

line through that center. Thus the space of
hoops in R-3 may be identified with R3xp 2.

_hP, gXPdll_ Let U be a nonempty, con-
nected open set in R s. Let F be a topologi-
cal foliation* of U such that every leaf of F

1991 MathematicsSubject Classification: 53C12, 57R30,
52C17, 52C22. Keywords: Hoops, foliations, packing, tiling.

*See Appendix for definition.

is a hoop. Then every two leaves of F must
link each other.

Corollary 1.1: There is an M > 0 such

that, if U is any connected open set in R 3
that is foliated by hoops, then the volume
of U must be < M.

Let the leastsuch M be

denoted by Vmax.

2_ 2 -< Vma x -< 2_(8_3+3"]'3),

i.e., 19.739... _<Vma x <_ 85.286 ....

Proof of Theorem 2: Firstwe show that

the volume of 2_ 2 isattainable.For any

realnumber r with 0 < r < 1,considerthe

circleC r ofradius r centered at the point

(1,0,0)and lying in the xz-plane.Rotating
C r about the z-axis,we obtain a torus of

revolutionwhich shallbe denoted by Tr
(For convenience we includethe degener-
ate case r = 0.)
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Each T r isfoliated by hoops.

Proof of Lemma 2.1: This fact seems

rather surprising at first, but was origi-

nally discovered 145 years ago by Yvon

Villarceau [2,3,4]. For this reason we

merely sketch the proof.

As is well-known, a defining equation for

the torus Tr is given by

(x 2+y2+z 2+1_r2) 2=4(x 2+y2).

Let alpha be the unique angle 0 _< a < rd2

such that sin(a)= r. Then it is not difficult

to verify that the intersection of the

sphere (x - sin(a)) 2 + y2 + z2= 1 and the

plane z/y = tan(a) is a circle of unit

radius, and must lie on the torus T r •

We denote this circle by V(a).

If V(a) is rotated about the z-axis through

any angle q), the resulting circle must also

lie on T_, by symmetry. Such circles are

disjoint for distinct angles q), 0 _< (p < 2_,

and their union is the torus T r (These cir-
cles are known as the "circles of Vil-

larceau.')

In fact, a parametric representation of one

of these circles is given by

x = cos(_Xcos(0)+sin(a))- sin(_Xsin(0)cos(a)),

y = sin(_Xcos(O)+sin(a))+ cos(q_Xsin(0)cos(a)),

z = sin(O)sin(a),

where 0 _<e _<2_, and r = sin(a) as above.

Notation: Let us denote the union of the

tori Tr, for0_< r< 1, byB.

Terminolowv: We use the term bialy to

describe any set in R 3 that is congruent to

B (by a rigid motion).

It is clear from the parametric representa-
tion above that these circles form a real

analytic foliation, by hoops, of the bialy B.

(This amounts to nothing more than giv-

ing the Villarceau foliation to each of the

nested tori Tr simultaneously.) The vol-

ume of B is easily calculated to be 2_2.•

Let H 0 be any hoop of the foliation. By
Theorem 1, all other leaves of the foliation

must link H 0. Hence every point of U
must lie within a distance of 2 from the

hoop H 0. This locus is congruent to the

result of revolving the disk

{(x,0,z) I (x- 1) 2 + z2 _< 4}

about the z-axis. Its volume is easily cal-

culated, using Pappus' Theorem, to be
2_(8rd3 + 3_/3).•

Vmax = 2_ 2 (- 19.739...).

Let U be any open set in R 3

that is foliated by hoops. (In general U

willbe unbounded and disconnected.) Let

V(r) denoted the volume of U that lies

within a distance r of the origin, and let

B(r) denote the volume of the ball of

radius r in R 3. Ifliraas r --->oo of V(r)/B(r)

exists,itiscalled the hoop packing frac-

tion of the foliated open set U, and

denoted by HPF(U). The supremum, over

all open sots in R 3 that are foliated by

hoops, of HPF(U) where itisdefined, is

called the packing fraction for hoops in
R3.
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The pacldng fraction for
s _>_2/(8_) (= .712...).

Remark: We do not know whether a
denser packing of hoops in R 3 is possible.

Proof of Theorem 3: Slice up R $ into par-
allel adjoining slabs of thickness = 2.
Within any slab, we may pack bialys hex-
agonally. This pattern may be repeated in
each slab. The packing fraction may be

determined by considering as fundamen-
tal domain the prism whose cross-section
is an equilateral triangle of side = 4 and

whose height= 2. This prism has its three
vertical edges aligned with the axes of
three bialys; its two triangular faces lie in
the two bounding planes of a slab, respec-

tively. The volume of the triangular prism
is 2"42¢-3/4 = 8"_. There is 3/6 = 1/2 of a

bialy contained within, whose volume is
2_2/2 = _2, and so the fraction for this
fundamental domain is _2/(8"_). As r --)

0% the "edge effects _ become negligible,
and so this is also the hoop packing frac-
tion in the limit for this open set.

Remark." Conway and Croft [1] have
shown using the Axiom of Choice that
with no continuity restrictions, all of R 3

may be partitioned into disjoint hoops.

Proof of Theorem 1:

]JtIIIIIIILI,_ Either every two leaves of F
link each other, or else no two leaves of F
link each other.

_of Lemma 1.1: Let L o and M 0 be
any two distinct leaves of F, and suppose
that they are linked. Let L 1 be any third
leaf ofF. Since U is open and connected, it
is also arcwise connected. Thus there

exists an arc A: [0,1] ---) U connecting L o
with L 1. We let L(t) denote the leaf contin-

ing A(t) (so we must have L(0) = L 0 and
L(1) = L1). Since {L(t)} forms an isotopy
of L o in the complement of M 0, all leaves

L(t) must link with M0 since L(0) = L 0
does. We conclude similarly that L 1 is
linked with any fourth leaf MI.I

Now we shall assume, con-
trary to what is to be proved, that in the
foliation F, any pair of leaves is unlinked.

Let H 0 be an arbitrary leaf of U. Pick a
point p of H0, and let D be a small planar
disk of radius e, centered at p and perpen-
dicular to H 0 at p. Let the circle C be
defined as the boundary of D.

Consider the leaves of F which intersect

C. For any point x of C, we denote by H(x)

the leaf of F which passes through x.

Now considerthe space HP(p) of allhoo_ps
that pass through a singlepoint p of R 3.

Such a hoop isdetermined by a) the plane

in which itlies,and b)the hoop'sdiameter

which liesin that plane and contains the
pointp.The plane may be considered tobe

an element x of projective space p2, and

the diameter is determined by a unit tan-

gent vector at x. Thus the space HP(p),,
may be identified with the space TI(P _) of
unit tangent vectors to p2 which is a 3-

dimensional manifold. For each point x of

C, the hoop H(x) determines an element in

the space HP(x), and thus in TI(P2). As a

result we have a continuous mapping

g:C --)TI(P 2)
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which associates to each point x of C the

hoop H(x) considered as a point of the

space Tz(p2).

The continuous mapping g:

ay be approximated by a

smooth mapping g2: C---)TI(P 2) whose

image contains no hoop parallel to H 0.

Proof of Lemma 1.2:We may C°-approxi -

mate g by a smooth mapping gl: C----)

TI(P2). Now consider allthe hoops in

TI(I_) which are parallel to the hoop H o.

These correspond to allthe unit tangent

vectors at a single point of p2, or in other

words, a circleCo.

We now wish to further approximate gl by

another smooth mapping g2 which avoids

C o.We may do this easily by standard

transversality theory, because of the fact

that dim(C) + dim(C 0)= 1 + 1 < 3 =

dim(Tl(P2)).m

Note that the hoops g2(x) for x in C must

be unlinked with H0, for they are C O -close

to the leaves H(x) of the foliationF, which

by Assumption are unlinked with allother

leaves and in particular with H 0.

Notation: The plane of the hoop H 0 will

be denoted by PO.

Choice of coordinates: Without loss of

generality, we may choose coordinates

such that Po is the xy-plane, and H 0 is the

unit circle in the xy-plane.

Consider the individual hoops g2(x) for

each x in C. By choice of g2, each hoop

g2(x) is not parallel to Po. Consequently,

each hoop g2(x) has a unique diameter

diam(x) that isparallel to Po.

ke,.._mLl.u_ The endpoints of these diam-

eters diam(x), for allx in C, form two

closed curves.

Proof of Lemma 1.3: We first note that,

since the curve C is chosen to lie close to

the hoop H0, we may assume that the

planes of the hoops g2(x), for x in C, lie

less than 90 ° from the plane PO. Hence

the plane of each hoop g2(x) may be

assigned a unit normal vector in a contin-

uous fashion (just choose the normal clos-

est to the positive z direction k = (0, 0, 1)).

Let us denote this continuous choice of

unit normal by n(x).

By our choice of g2 above, n(x) may never

be parallel to k. The cross product

v(x) = k × n(x) istherefore never 0 for x in

C. The vector v(x),since itis perpendicu-

lar to both k and n(x) must be parallel to

diam(x) for each x in C. Consequently, the
formula

L(x) - center(x) + v(x)/Iv(x)[

where center(x) denotes the midpoint of

diam(x), selects one of the endpoints of

diam(x) in a continuous fashion. Similarly,

R(x) - center(x) - v(x)/Iv(x)[

selectsthe other endpoint continuously.

As x traverses C, L(x) and R(x) must

therefore each describe a closed curve.m

The curves C and L are

freely homotopic in the complement of H 0.

of Lemma 1.4: Let N denote the

point (0,0,0,1) of the 3-sphere S 3. We shall

make use of the stereographic projection
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sp: S 3 - {N} --) R 3

given by sp(x, y, z, w) = (x/(1-w), y/(1-w),
z/(1-w)).

Some factsabout stereographicprojection:

1.The stereographicproo_ectionsp isa
homeomorphism from S - {N} to R _.

2.Stereographicprojectionpreserves
angles.

3.Any circle in S 3 - {N} is carried to a cir-
cle in R 3.

4.Any sphere in S3 - {N} iscarriedto a
sphere in R 3.

Since H o isthe unit circlein the xy-plane,

the mapping willtake the great circle
{(x,y,0,0) I _ + y2= 1} onto HO. Let H

denote any hoop in R 3 that isdisjoint

from H 0 and does not link H 0.

Notation:We denote the preimages of H 0
and H under the mapping sp by K 0 and K,
respectively.

Lemma 1.4.1: There is a unique smallest
great spherical cap in S s whose boundary
is K.

Proof of Lemma 1.4.1:Firstnote that K

willnot be a great circlein S3.For,any
two great circlesofS 3 eitherintersector
are linked with each other.But K cannot

intersector link Ko, since H does not

intersector linkH o.

There isonly one great S 2 ofS 3 which

contains IC For sup3posethat $2 isany
great 2-sphere ofS containing K. Then

S 2 must be the unit sphere of the unique

3-dimensional subspace of R 4 containing
K and the origin.

Hence there are exactly two great spheri-
calcaps in S 3 whose boundary isK; their

union isS2.Since K isnot great,justone
ofthese caps issmaller than a hemi-
sphere.m

For any non-great circleK in
S°, we denote by cap4(K) the unique least

great sphericalcap whose boundary isK.

Lenuna 1.4.2: The spherical cap cap4(K)
is disjoint from K0.

Proof of Lemma 1.4.2:The sphericalcap

a_.4(K) ispart ofsome great 2-sphere S in
Now such a great sphere liesin a

unique 3-dimensional subspace W 3 ofthe
R 4 in which the S 3 sits.At the same time,

the great circleK 0 liesin a unique 2-

dimensional subspace W 2 ofthe R 4.By
linearalgebra,W3AW 2 in R 4 may be
either1-or 2-dimensional.

i) IfW3nW 2 is 1-dimensional, then Sn K0
will be just 2 diametrically opposite

points. If one of these lies in cap4(K) then
the other cannot. This would imply that K
linksKO, contrary to hypothesis.

ii) IfW3nW 2 is 2-dimensional, then SnKo
will be a great circle, which must be all of

K0. If any point of K0 lay in cap4(K), then
K0 would have to intersect K, contrary to
hypothesis.I

Now, toeach hoop H in R 3 which isdis-

jointfrom and not linked with H 0,we

assign a sphericalcap cap(H) as follows:

Let K be the preimage of H under the
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mapping sp; letcap4(K) be the unique

smallestsphericalcap whose boundary is
K; and finallywe letcap(H) be

sp(cap4(K)).

Note that,by construction,forallhoops H
which are disjointfrom and do not link

H0, cap(H) isdisjointfrom H 0.In addition,
cap(H) isa continuous functionofthe

hoop H.

Now we apply thisconstructionto our
family ofhoops { g2(x) [ x _:C }.Since
everything in sightiscontinuous,the

sphericalcap cap(g2(x))depends continu-

ously on x _ C.

The pole ofcap(x),denoted
pole(x),willreferto the unique point of

cap(x)that isfarthestfrom itsboundary,
H(x).

Now we define a free homotopy from C to
L as follows: Let x be any point of C. For

0 < t _< 1/2, let F(x,t) be the constant-speed

geodesic on cap(x) from x to pole(x). For

1/2 _<t _< 1, let F(x,t) be the constant-speed
geodesic on cap(x) from pole(x) to L(x).

Thus Lemma 1.4 is proved.I

Now sinceC linksH 0 and L isfreely

homotopic to C in the complement of H 0,L

must linkH 0 as well.Hence some point

L(z)of L must intersectthe disk D o that

liesin the plane PO and isbounded by H 0.
(Here z denotes some point ofthe curve

C.)Let the hoop g2(z)be denoted by H. By
construction,the "right"endpoint R(z)of

diam(z) must alsoliein the plane Po and
in the leafH.

Now, the distancebetween L(z)and R(z)is

exactly2, sincethey are diametrically

oppositepoints on the hoop H. Since L(z)

liesinsidethe unit disk D O,itfollowsthat

R(z)must lieoutside the disk D O in the
plane Po. This implies that the hoop H

linksthe hoop HO, contrary to Assump-
tion.The conclusionnow followsfrom
Lemma 1.1.m

Foliations

Let U denote an open set in

Euclidean n-space R n, and letF = {La} be

a collectionofconnected subsets L a ofU.
Then F issaid to be a k-dimensional

foliation ofU ifthe followinghold:

1)Each x e U liesin exactlyone L a
2)For every x e U, there existsan open set

V with x e V _U, and a homeomorphism
h: V = R k × R - , such that for any y e

R n-k, h-l(R k × {y}) is a connected compo-

nent of the set L a c_ V, where L a is the
unique subset containing the point x.I

Intuitively, this definition says that the

decomposition of U into the pieces L a
looks locally just like parallel k-planes in
R n .

IfF = {La} is a k-dimensional foliation of

U, then each subset L a is known as a leaf
of the foliation, and is in fact a k-dimen-

sional submanifold of U. The definition of

a foliation given above is sometimes more
specifically referred to as a C O (or topo-

logical) foliation. More generally, if each
homeomorphism h in the above definition

may be chosen to be a C r diffeomorphism,
then F is said to be a C r foliation.
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(next 2 pages)

Circles of Villa_u are shown

for torus T r for r = .8

Nested tori T r are shown for r =

.2, .4, .6, .8 as part of foliation of bialy.
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